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A Fourier approximation method for steady water waves 
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(Ibeceived 3 December 1070 and in rw isocl forin 2 <June: 1!)80) 

A method for the numerical solution of st>eadily progressing periodic waves on irrota- 
tional flow over a horizontal bed is presented. No analytical approximations are made. 
A finite Fourier series, similar to Dean’s stream function series, is used to give a set 
of nonlinear equations which can be solved using Newton’s method. Application to 
laboratory and field situations is emphasized throughout. When compared with 
known results for wave speed, results from the method agree closely. Results for fluid 
velocities are compared with experiment and agreement found to be good, unlike 
results from analytical theories for high waves. 

The problem of shoaling waves can conveniently be studied using the present 
method because of its validity for all wavelengths except the solitary wave limit, 
using the conventional first-order approximation that on a sloping bottom the waves 
a t  any depth act as if the bed were horizontal. Wave period, energy flux and mass flux 
are conserved. Comparisons with cxperimental results show good agreement. 

1. Introduction 
Traditionally there have been two main approaches to the nonlinear problem of a 

train of waves of constant form propagating steadily over fluid on a horizontal bed, 
both based on expansions in a small parameter. The best known is that of Stokes 
in which this parameter is the leading coefficient of a Fourier expansion, appearing in 
dimensionless form as a, k where k is the wavenumber. This expansion has been taken 
to fifth order hy De (1 955) and Skjelbreia & Hendrickson (1 961), and similar expansions 
to very high order by Schwartz (1 974) and Cokelet ( 1977). These high-order expansions 
made extensive use of computer manipulation of the series and necessary convergence 
improvement techniques to obtain accurate results. Examination of the fifth-order 
results shows that the expansion parameter is effectively a, k/sinh3 k?j, where !ij is the 
mean water depth. Hence, for these Stokes expansions to be rapidly convergent, 
a,k should be small and the water depth q be large enough so that the necessary 
condition a, k << (kr))3 is also satisfied. Thus Stokes’ approach is best suited to waves 
which are not too high in water which is not too shallow. 

Complementary to Stokes’ expansions are those which are based on series in terms 
of shallowness (?/A, where h is the wavelength), giving rise to  cnoidsl wave solutions. 
When these series arc recast in terms of wave height 11, it is found that the effective 
expansion parameter is H l m y ,  where m is the modulus of the elliptic functions which 
occur throughout cnoidal wave theory and which becomes small for waves in deep 
water (see Fenton 1979). For cnoidal wave expansions to give accurate results, H/+j 
must be small. The requirement that m is not small must also hold and this is easily 

0022-1 120/81/4651-3390 $02.00 0 1981 Cambridge Univcrsity Press 



120 

shown to correspond to the condition < 1. Cnoidal wave solutions are thus 
applicable to waves which are not too high in water which is not too deep. In  any 
practical application it is desirable to use whichever of the two theories is appro- 
priate to the water depth: neither approach is uniformly valid in all water depths. 

Of the studies mentioned above, few have concentrated on presenting results in a 
directly applicable form. Exceptions include the fifth-order Stokes wave solution of 
Skjelbreia & Hendrickson (1961) and the fifth-order cnoidal wave solution of Fenton 
(1979). In  their respective regions of validity, the series expansions give good results 
for overall wave train parameters such as the wave speed; however, for details of the 
flow field, such as fluid velocity, they are not always satisfactory: €or example, for 
comparison with the experimental results for long waves of Le MBhautB, Divoky & 
Lin ( I  968), fifth-order Stokes wave solutions could only be obtained for one quarter 
of the experimental cases - the shortest waves. On the other hand, cnoidal wave 
theory in the long-wave region gave excellent results for waves of height H/?j z 0.4, 
but for H / p  z 0.5 was considerably in error, I n  view of this lack of uniform accuracy 
and validity, there is a need for a reliable method for solving steady wave problems 
in a form which makes no essential analytical approximations, which is valid for both 
deep and shallow water and which is capable of direct application. 

A method which has the potential for satisfying these criteria is that developed by 
Chappelear (1961) and the ‘stream function’ method of Dean (1965, 1970a, b ) ,  which 
may be categorized as ‘Fourier approximation methods’, as they are based on the 
use of truncated Fourier expansions for field quantities. Assuming such an expansion 
so as to satisfy the field equation and bottom boundary condition identically, the 
problem reduces to  solving a number of nonlinear equations for each of the Fourier 
coefficients, for equi-spaced values of the surface elevakion and for quantities charac- 
terizing the wave train as a whole, such as wave speed. I n  the approach of Chappelear 
and Dean, solution of these equations proceeded by a method of successive corrections 
to an initial estimate in such a way that the least-squares errors in the surface boundary 
conditions were minimized. 

There are several aspects of this approach and its reported results which are not 
altogether satisfactory, and which may have inhibited its deserved widespread use. 
With the technique as set up by previous workers, truncation of the series is not the 
only approximation; a limitation to the attainable accuracy has been introduced by 
the use of a Simpson’s rule integration a t  one stage in the solution process. An alter- 
native version of Dean’s method (using a Schmidt orthogonalization process) has been 
given by Chaplin (1980), who obtained results which agreed more closely with the 
trend of Cokelet’s results. The method, like the original version, is not straightforward 
in application, and neither of them can be used for waves in deep water since the stream 
function expansions contain hyperbolic functions which become very large for this 
case. These methods do not allow for the possible specification of mass flux as deter- 
mining the wave speed, a situation which is commonly encountered. 

As pointed out by Stokes (1 847) waves can travel a t  any speed without change of 
form. I n  any particular frame of reference the waves travel a t  a speed determined 
by some quantity such as current speed or mass flux in that frame, as well as constraints 
due to viscosity such as the relative motion between wave and bottom. If viscosity is 
neglected, the wave travels a t  a speed relative to the bottom determined by some 
specified value of mean current or mass flux. It is possible to  solve the problem in a 
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frame relative to  which motion is steady, without having to define the wave speed. 
However, in most situations the waves are viewed from a different frame of reference 
in which they are not stationary. If the wave period in this frame is specified, or if the 
fluid velocities in this frame are required, an assumption as to wave speed must be 
included in the analysis. The case where the time mean mass transport throughout 
the fluid is specified applies to, amongst other situations, wave tank experiments such 
as those of Le Mkhautk et al. (1968) where the end of the tank is closed and mass flux 
is zero. Dean (1  974) has produced extensive tables of integral quantities and fluid 
velocities for a number of particular cases of wave height and period. However, all 
these seem to be for the special case of when the Eulerian mean velocity is zero, that 
is, the current is zero. 

In  view of these comments on the lack of universal applicability of Stokes and 
cnoidal wave expansions and on some unsatisfactory aspects of the stream function 
method, it was decided to develop a numerical method, also based on Fourier approxi- 
mation techniques, having as its only approximation the truncation of the Fourier 
series. It would be valid for deep and shallow water (but not for the solitary wave limit) 
and would be flexible enough for any two quantities (such as wave height and period, 
or wave period and energy flux) to be specified so that a solution could be obtained. 
The development of such a method, using Newton’s technique for the solution of a 
system of nonlinear equations, is described in 3 2. In  3 3, results from the method are 
compared with experimental results for the velocity profile under the crest of periodic 
long waves. Because of the ease of application of the method set up in 3 2 to a practical 
situation where any current or mass transport speed, wave height and period may be 
specified and velocities, accelerations etc. determined at  any point in the fluid, it was 
considered unnecessary to produce tables for limited situations from which the desired 
quantities would have to be found by interpolation. Finally, in $4, the problem of 
shoaling waves is studied. The present method is not strictly applicable to this problem, 
but its accuracy for waves over a horizontal bed in water of almost any depth make it 
more accurate and widely applicable than previous shoaling approximations. 

2. The steady wave equations and their solution 
2.1. A Fourier approximation to the equations 

The problem considered is that of two-dimensional periodic waves propagating with- 
out change of form over a layer of fluid on a horizontal bed. With horizontal co-ordinate 
x and vertical co-ordinate y, the origin is on the bed and moves with the same velocity 
as the waves so that in this frame of reference all motion is steady. If the fluid is in- 
compressible it is possible to define a stream function $(x , y )  such that the velocity 
components (u, v )  are given by 

u = a$/ay,  v = -a+/ax, 

and if the motion is irrotational, $ satisfies Laplace’s equation throughout the fluid: 

The boundary conditions to be satisfied are 

$(x,  0) = 0, $(x,  r(x)) = - &, (2)) (3) 
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where y = ~ ( x )  on the free surface and Q is a positive constant denoting the total 
volume rate of flow underneath the steady wave per unit length in a direction normal 
to the 5,  y plane (henceforth referred to as unit span). With this sign convention the 
apparent flow is from right to left, in a negative-x direction. On the free surface, the 
pressure is constant so that Bernoulli's equation gives 

- l a g  [ ( y+ (g)2] +r = R, 
2 ax (4) 

where R is a constant, In  these equations, all variables have been non-dimensionalized 
with respect to the average depth, 7,  and gravitational acceleration, g: that is, x is 
used for xfv, y for y/v, ?I for y/?j, $ for $ / ( g v 3 ) 9 ,  Q for Q/(g?j3)i and R for Rlgij. Other 
non-dimensionalized variables to be introduced are: the wave speed c for c / (g i j ) * ;  the 
wavenumber k for kv = 277Tj/h where h is the wavelength; the wave period T for r (q /v )*;  
and an arbitrary reference level D for D/?. 

If the symmetry of the wave about the crest is exploited, a series for $(x, y) can be 
written 

satisfying equation ( 1 )  and the boundary condition ( 2 ) .  The Bo, . . . , BN are constant for 
a particular wave. The assumption, for computational purposes, that  N is finite is the 
only approximation made in.this method of solution. 

Thus equation (3) becomes 

N sinhjkr 
Bo?+ x B j  coshjkD cosjkx = - Q  for all x, 

j = 1  
and (4) becomes 

+ r  = R for all x. (7)  

I n  his approach, Chappelear (1961) introduced a Fourier series for ~(x); it is clearly 
simpler to use r(x) itself in these equations. 

It was found that the exponential behaviour of sinhjkr and coshjky, for large 
values of j, caused undesirable numerical errors without the coshjkD term in the 
denominator and so this compensating factor was introduced, thus redefining the 
Fourier coefficients. For large values of ljl , 

coshjk? sinhjkr 
coshjkD - coshjkD 'y exp rljlkcr - D)l, 

and so if D is chosen in the range of ? or slightly greater than the maximum value of 
q ,  any problems associated with these hyperbolic functions are surmounted. Since its 
value is somewhat arbitrary, perhaps the best choice is D = 1,  corresponding to the 
mean depth. With this introduction of coshjkD in the denominator, waves in deep 
water, possibly infinitely deep, can be studied. 

To solve the problem numerically, equations (6)  and ( 7 )  are to be satisfied a t  2N 
points equally spaced over one wavelength, though by symmetry only N + 1 points, 
from the wave crest to the trough, need to be considered. 
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Let ym = ~ ( x , )  where x,, = mh/2N,m = 0,  1 ,  .. ., N and kx, = .rrm/N, so that equa- 
tions (6) and (7)  become 

(8) 
N sinhjky, 

B o r m f  B j  coshjkD cos ( j m n / N )  + Q = 0 for m = 0, 1, ..., N ,  
i = 1  

and 

also for m = 0,1 ,  ..., N ,  where 
4 ~ : ~  + ~ v L  + 7, - R = 0, (9) 

and 
N sinhjky, 

'7Il = j B j  coshjkD sin(jmn/N) = vfx,, y m ) .  
j = 1  

These 2N + 2 nonlinear equations involve the 2N + 5 variables yj, Bj  (j = 0, . . ., N ) ,  
k ,  Q and R. To obtain a solution 3 more equations must be specified. Since variables 
have been non-dimensionalized with respect to 7, an equation for the unit mean depth 
may be written 

This simple trapezoidal rule for the numerical integration of the periodic function 
y can be shown to  be of the same accuracy as the previous equations by writing 7;r as 
an N-term Fourier series and performing some simple manipulations. 

With the values of R and Q specified, these equations may be solved for the remain- 
ing unknowns. However, for practical problems, it is usually values of the wave 
height H ,  and the period r, which define the problem. Two additional equations which 
specify these physical parameters are 

yo-r,y-H = 0, ( 1 1 )  

where yo is the surface elevation at the crest and y N  that a t  the trough and 

kcr - 277 = 0. ( 1 2 )  

The latter equation introduces one more variable, namely, the wave speed c. As  men- 
tioned in $ 1 ,  the assumption as to the speed at  which a wave travels must be stated. 
This may be done by specifying the time mean Eulerian velocity cE throughout the 
fluid. I n  the steady frame the mean velocity a t  each level within the fluid is Bo, which 
is negative. To consider motion relative to  any frame through which the waves move, 
a uniform wave speed c is superimposed, so that in this frame, the time mean Eulerian 
velocity cE = c + Bo. Thus, if the current cE is specified, c satisfies the equation 

c-cc,+BO = 0. (13a) 

Alternatively, it may be appropriate to  specify the mean particle drift velocity (that 
is, the mass transport velocity) c,. I n  the steady frame with mean fluid depth unity, 
the volume rate of flow, equal to  the mean velocity with which particles move under 
the wave, is - Q. Therefore, in another frame the mass transport velocity c, = c - Q, 
so that  if cs is specified, c satisfies 

C - C ~ - - Q  = 0. 

5 
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This method does not rely on the specification of H and 7 - any other two variables 
may be assigned in their place. However, if r is specified, then by virtue of ( 1  2 )  some 
value of either cE or cs must be given to be used in (13a)  or (b ) .  

The 2 N  + G equations (8)-( 13) form a closed system for the unknown variables 
7,) B, (j  = 0, ..., A'), c,  k, Q and R. 

2.2 .  Solution by Newton's method 

The system of nonlinear equations (8)-( 13) may be written 

f j ( v J ) B 3 ( j  = 0, ..., X ) , c , k , Q ,  R) = 0, i = 1, ..., 2 N +  6, (14)  

where for i = 1, . . . , N +  1 ,  the f ,  represent (S), for i = N+ 2,  . . ., 2 N  + 2, the f, represent 
(S), fiA\r+a is ( lo) ,  fi , ,+4 is (1 i),  fZvt5 is (12) andf,,,, is either (134  or (b ) .  This set of 
equations can be solved by a Newton's method which iterates, with quadratic con- 
vergence, to  a solution from an initial approximation. If the system of equations (14) 
is written 

f,(z) = 0, i = 1, ..., 2 N t G ,  (15) 

where z = {zl ,  1 = 1 ,  . . . , 2 N  + G} is the vector of arguments of f L  as in (14), and if the 
approximate solution vector after the nth iteration is zn, the error vector may be 
written 

f" = {fL(zn) ,  i = 1, . . . , 2 N  + G} = {f?, i = 1, . . . , 21Y + 6) .  

From a Taylor series expansion, the error a t  the next iteration will be 

2 N t 8  af. n 

f:+' = f T +  (&) (z;+l--@)+ ..., i = 1 ,  ..., 2 N + 6 ,  
1=1 

where (af i /azl) .  = afi(zT)/az,. 
However, the desired result is fn+l = 0 and the solution vector zn+l which approxi- 

mately yields this result is found by truncating the series after the term shown and 
solving the resulting system of linear simultaneous equations written as a matrix 
equation: 

where 
A(zn+-1- Z n  ) = -f", 

The derivatives afi/az, are obtained from equations (8)-(13) and are as follows, all 

For i = 1, ...,AT+ 1,  m = i- 1 ;  
derivatives not shown explicitly being zero. 

uWl, where u, and are defined in (9) ; afi - 
a'I, 
- _  
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(it should be noted that x, = nm/Nk, so kx, = nm/N is not a function of k);  and 

N 1v 

j = l  j = 1  
(urn - BO)/k + Icyrn 2 j2BjSFA - kD 2 j2BjCi2,! tanhjkD 

vm/k + k y ,  2 j2Bj CyA - kD C j2BjSjii tanhjkD ; 1 N N 

j = 1  j = 1  

aR af,- - - 1 .  

Here, 
l / 2 N ,  j = 0 and j = N ,  

ari 1 / N ,  j =  1 ,..., N - 1 ,  

For equation ( 1 3 ~ ) )  af2N+6/i3B0 = 1, while for (13b) afiN+,JaQ = - 1.  In  the notation 
used above 

sinh j k  7, 
coshjkD qz = ~ cos(jmn/N), Sf,s = 

cosh jky, 
cosh jkD cy2 = sin (jmn/N), C$% = 

sinh jky, 
coshjkD 

cosh jkr, 
cosh jkD 

sin (jmn/N), 

cos (jmn/N) , 

The initial approximation to  the solution is assumed to  be a linear sinusoidal wave, 

y m  = l+frHcos(mr/N) for m = 0, ..., N ,  
that is, 

B 0 -  - -c ,  B,= -aH/ck, Bj = O ,  j =  2 ,..., N ,  

R = 1 + &c2, Q = C ,  

where c and k are found recursively from 

k = 2 n / ~ c ,  c = {tanh k/k}*, 

with an initial guess c = 1, corresponding to a long-wave approximation. 
For shorter waves, with larger values of k ,  it was found that with a choice of D = 0, 

as used by Dean (1965), the iteration did not converge. This was because of the expo- 
nential behaviour of sinhjkr and coshjkr as previously discussed. This problem was 
overcome by choosing D = 1. 

5-2 
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The method was programmed and run on a computer. Convergence of the iteration 
was extremely rapid. When the method converged, the number of iterations was found 
to be independent of wave height, 5 iterations usually being sufficient for conver- 
gence to 12  decimal places. For very high waves it was found that the Stokes approxi- 
mation was not a sufficiently accurate initial estimate of the solution and convergence 
was not achieved. In  this situation it was necessary to extrapolate to the initial 
approximation from converged solutions for lower waves. 

2.3. Results for practical application 

The solution obtained by the above process may be used to provide results for other 
variables which may be of interest in areas of practical application. 

(a )  Qunntities varying with position and time. All physical variables considered so 
far have been in a co-ordinate system which moves with the wave with the origin under 
the crest so that all motion in that frame of reference is steady. Accordingly, the steady 
velocities are 

where 

and 

where 

N 

j = 1  
u(x ,  y) = B, + k c U j ( X ,  y), 

sinhjky 
coshjkD 

v ~ ( x ,  Y) = j B j  ___ sinjkx. 

Then, from Bernoulli's equation, the pressure p ( x ,  y) is given by 

p ( x ,  y) = R - y - &[U2(X,  y) + v2(x, y)], 

where p ( x ,  y) represents the dimensionless pressure p ( x ,  y)/pgT, and p is density. 
Now in another co-ordinate system ( X ,  Y )  on the bed, in which motion is unsteady 

and the waves are moving from left to right a t  speed c, the unsteady velocities 
U ( X ,  Y , t ) ,  V ( X ,  Y , t )  become 

N 

i=l 
U ( X ,  Y , t )  = c + B , + k  c ui(X--X, -c t ,  Y ) ,  

V ( X ,  Y , t )  = k 2 V,(X-X,-cl ,  Y ) ,  
N 

j = 1  

where the u j ,  v j  are defined in ( lGa) ,  (16b). The wave crest is a t  X = X ,  when t = 0. 
Thc derivatives are given by 

A'' coshjky 
sinjk (X - X ,  - c t ) ,  

au av 
= - 

= - k2 c j Z B j  coshjkJ) 
j = 1  

arJ aV N sinhjky k 2 j j l ; l j 2 B j C O S h j k J )  cosjk:( x - x, - ct) ,  
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a CJ - au av- av 
-- - c = >  at- -c=,  at 

DU au au au DV av av av 
- +u-+v- - -  - -+U-+T'- 

Dt at ax ay) Dt at ax ay' 

Pressure is given by 

P(X, Y , t )  = R- Y - ~ [ 2 L 2 ( X - X 0 - C t ,  Y ) + v " X - X , - c t ,  Y ) ] .  

( b )  Physical quantities characteristic of the wave train. These quantities are introduced 
here in lion-dimensionalized form, often using a mean over one wavelength or period 
which is denoted by an overbar. Several of the results of Longuet-Higgins (1975) and 
Cokelet (1977)  are used to  provide equations for the newly-introduced quantities in 
terms of the variables introduced in $2.2. I n  fact, any of these relations could be used as 
part of the system of equations: for example, a numerical value of I might be specified 
and (1 7 a )  below would provide an equation to replace (1 l), (12) or (13) .  
Wave impulse: The mean wave impulse per unit horizontal area is 

I = F  

= c-&.  

Kinetic energy: The mean liirietic energy per unit horizontal ares is 

T = S " $ ( U 2 +  V2)dy 
0 

= $ c I - ( c + B o ) Q .  

Potentiul energy: Mean potential energy due to  the waves per unit horizontal area is 

where 

lMean square of bed velocity: 
- n 
ug = ;/ uyx, 0, t )  d X  

0 

Radiation stress: The excess flux of momentum per unit span due to the waves is the 
radiation stress. 
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Mean wave power: The mean wave power (or energy flux) per unit span is 
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= (3T- 2V) c + @(I+ c)  -k c(c +B,) &. 

Mean Stokes drift velocity: 

MomentumJlux: The momentum flux per unit span in the steady flow is 

C,  = C - Q  = I. 

= S, , -2cIf -c2+$.  

In dimensional terms, I represents I/p(g?j3)*, T represents T/pgij2, V represents 
V/pg7j2, 2 represents g/g7j, S,, represents Szx/pg?j2, F represents F/p(g37j5)t, c, repre- 
sents c,/(g?j)g and S represents S/pgq2, 

2.4. Accuracy of the solution 

The present method does not suffer from the disadvantages of the Stokes and cnoidal 
expansions in that it does not depend upon the waves being small and it is valid for 
all depths: it is essentially a numerical technique for the approximation of continuous, 
periodic functions by Fourier series. The theory of such series and knowledge of the 
behaviour of water waves provides some insight into the limits of the method. 

It is well known that for higher waves the crest becomes more peaked until it 
approximates a sharp-crested wedge with a discontinuity of gradient. Any Fourier 
series for a function with a discontinuous first derivative has coefficients which 
decrease like n-2 which is much slower than for a function which is everywhere smooth. 
Thus, although the Fourier method makes no approximation as to wave height, the 
sharpness of the crest for higher waves means that larger values of N must be used to 
give accurate results. Also, longer waves tend to look like a solitary wave, that is, the 
elevation above mean depth is nontrivial only for a small portion of the wavelength. 
The associated Fourier series contain coefficients which oscillate and decay very 
slowly thus necessitating the use of larger values of N .  

A numerical method for the solution of steady waves has been applied by Vanden- 
Broeck & Schwartz (1979). Its  results support the accuracy of those of Cokelet (1977), 
and are capable of greater accuracy for longer waves. However the method is still of 
an inverse formulation and not convenient for practical application. Few results are 
given, whereas Cokelet has presented a number of results for the quantities given in 
3 2.3. It does not seem necessary to make detailed comparisons for all of these and 
since the wave speed c has traditionally been used as the first basis for comparison 
between wave theories, it is this quantity which is used to examine the accuracy of 
the present work. For each of ten different values of k&/c, which is a measure of the 
ratio of wavelength to depth of fluid, Cokelet presented a table of corresponding 
values of his dimensionless variables i k H ,  kc2 and k(?j - &/c) .  His results are indicated 
by the solid lines in figure 1 showing a plot of c2 against H for each constant value of 
kQ/c .  Each curve is labelled with the approximately constant value of the dimension- 
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1.4 

1.2 

C Z  

1 .o 

0.8 

I- 

h = 28 

2 12 

= I  

1 1 1 I I  I I I I I I  

0 0.2 0.4 0.6 
H 

FIGURE 1 .  Comparison between the present method and the results of Cokelet (1P77) for the 
wave speed squared, c2,  as a function of wave height H .  Present method: N = 8 (. . . ;, N = 16 
(- - - -), N = 32 indistinguishable from Cokelet’s results (--) at this scale. Each curve is 
drawn for a constant value of k Q / c  taken from Cokelet’s tables A2, A4, A6,  A8, giving the 
almost constant values of wavolength shown. 

less wavelength h since this quantity has more obvious physical meaning than kQ/c.  
To compare results from the present method with those of Cokelet, it was necessary 

to solve the problem, as set up in $2.1,  for the increasing values of H at  a constant 
value of kQ/c  as tabulated in his results. Thus, instead of specifying the period, the 
value d ( = k&/c)  was given and equation (12) replaced by 

Accordingly, 

and the other derivatives are zero. Equation ( l 3 a )  was used with cE = 0, that is, a t  
any depth, the mean Eulerian velocity over one period was zero. 

As before, the initial approximations for the first two waves which have small 
amplitudes were found from linear theory. However, subsequently, in order to obtain 
a good initial solution, the estimate for each successive wave problem was determined 
by a linear extrapolation from the converged solutions for the previous two waves. 
Results are shown in figure 1 which indicates the very close agreement with Cokelet 
that  was obtained so that the solutions are almost everywhere indistinguishable. 
Only for the very highest and longest waves with relatively coarse numerical approxi- 
mation (small N )  were significant errors obtained. For the longer waves larger values 
of N are required to give accurate results for the maximum in c2 and beyond. Overall 
the numerical method based on Fourier approximation gave results which agreed 
closely with those from high-order Stokes series in which convergence improvement 
techniques were necessary. 

kQ-cd = 0. 

afzn.+c/aQ k ,  afz.v+5/ac = - d ,  afiA\+5/ak = Q 



130 21.1. Jl. Rienecker and J .  D .  Fenton 

r 
Present method Vanden- 

(.----h_---, Broeck & 
Cokelet Schwartz HI? N = 16 32 64 

0.1729974 
0.2526308 
0.3802643 
0.4944549 
0.602447 
0.651 251 
0.672143 
0.6832 
0.6908 

0.6 15059 
0.6311 12 
0.666501 
0.706443 
0.748231 
0.7 64455 
0.767725 
- 

0.6 15059 
0.631 112 
0.666501 
0.706443 
0.748230 
0.764402 
0.767676 
0.765720 
- 

0.61 5059 
0.631112 
0.666501 
0.706443 
0.748230 
0.764403 
0.7 67 76 
0.76703 
0.7630 

0.61 5059 
0.631112 
0.666501 
0.706443 
0.748230 
0.764403 
0.767 748 
0.76707 
0.7660 

Not presented 
Not presented 

0.666501 
0.706443 
0.748230 
0.764403 
0.767750 
0.767097 
- 

TABLE 1. Comparison of results for wave speed squared when exp ( - k Q / c )  = 0.5, that is, 
wavelength/depth x 9. - signifies no results obtainable. Results from Cokelet and Vanden- 
Broeck & Schwartz are the most accurate presented by them: as with the present method 
accurate results are often obtainable at lower levels of approximation. 

The present method is a direct one in that values of stream function are obtained 
as a function of position. As the sharp-crested highest wave is approached the complex 
velocity potential 10 near the crest behaves like 2% where z is the complex co-ordinate 
relative to the crest. Thus, the complex velocity d w l d z  - 23, also goes to zero a t  the 
crest. The expansion (5) does not explicitly include this local behaviour which, how- 
ever, seems sufficiently smooth that this does not matter. If an inverse method were 
used, so that z(w) had to be found, only halftheunknownsneed to be consideredbecause 
the kinematic boundary condition could be satisfied exactly. However for the highest 
wave, near the crest, z - w3, and the inverse of the complex velocity dz ldw  - w-f ,  
showing singular behaviour which is more difficult to approximate numerically. 

In  an experiment to reduce the value of N required for higher and longer waves, 
the points on the free surface at which the equations were to be satisfied were clustered 
near the crest. This clustering is necessary in inverse numerical methods such as that 
used by Vanden-Broeck & Schwartz (1979)) which otherwise spaces points coarsely 
near the crest. It was not expected to be an advantage in the present method, as the 
Fourier approximation requires a number of points on the long flat trough as well as 
in the vicinity of the crest. Results obtained did show that this was indeed the case, 
and it can be recommended that in all future applications, equi-spaced points be used. 

A more detailed comparison between the present method and the results of Cokelet 
(1977)  and Vanden-Broeck & Schwartz (1979) is presented in table 1. Results are 
given €or the wave speed squared a t  various values of wave height, for a constant value 
of exp ( - k Q / c )  = 0.5, corresponding to a wavelength to water depth ratio of about 9, 
a moderately long wave. The Fourier method gave highly accurate results for waves 
up to about 99 yo of the maximum height. It is interesting that although the coarsest 
approximation, N = 16, did not converge to a solution for the highest waves, it was 
still accurate for waves up to 97 yo as high as the largest. For shorter waves the Fourier 
method is more accurate than for this case. At the other extreme of very long waves 
with a long flat region between crests, for which the Fourier approximation is not so 
well suited, results for wavelengths about 60 times the depth were obtained. For this 
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case exp ( - k Q / c )  = 0.9, direct comparison between the methods is rather more 
difficult because Cokelet did not present reliable results for the greatest wave heights 
and Vanden-Broeck & Schwartz presented no wave-height results. Values of kc2/g 
obtained respectively by (i) the present method with N = 64, (ii) Cokelet and (iii) 
Vanden-Broeck & Schwartz are: maximum value, (i) 0.1654, (ii) 0.1645, (iii) 0.165038; 
and for the value corresponding to the highest wave solution obtained, (i) 0.1640, (ii) 
0.162, (iii) 0.164437. 

3. Fluid velocity under the crest: comparison with experiment 
Theories based on expansions are not universally applicable to all situations since 

they depend on the expansion parameter being small and so do not produce good 
results for high waves. This is borne out when theoretical results are compared with 
those obtained by experiment. 

Two experimental investigations which measure fluid velocities in a wave tank are 
those of Le M6haut6 et al. (1968) and Iwagaki & Sakai (1970). The latter results seem 
to indicate the presence of a boundary layer which is much wider in the experimental 
situation than would be expected in the corresponding real situation and is not indi- 
cated in the profiles of Le MBhaut6 et al.; hence the variation with depth of the hori- 
zontal fluid velocity under the crest, as obtained by the method in 3 2.2, is compared 
with the earlier results. 

These experiments measured, in a finite time interval, the displacements of marked 
particles which moved with the fluid, that is, Lagrangian velocities were measured 
whereas the velocities determined in $ 2  are Eulerian quantities. Although the in- 
stantaneous La.grangian velocity is the same as the Eulerian velocity, the experi- 
mental values must be averaged over a finite time interval by virtue of the measure- 
ment process used, thereby underestimating the instantaneous velocity under the 
crest of the wave. It is possible to estimate the difference between the two, the mean 
velocity of a particle over a finite interval and the instantaneous velocity at a point ; 
however, no indication of particle positions or time intervals was given and so no 
correction can be made in the subsequent comparison with Eulerian velocities. 

Longuet-Higgins ( 1953) described the phenomenon of the steady particle drift 
caused by the viscosity of the fluid. For relatively large waves, as in the experiments 
considered here, the predicted effect is that a streaming of the particles should quickly 
be set up so that those near the bottom experience a relatively large steady drift 
velocity in the direction of wave propagation, while those near the top move in the 
reverse direction. However, there is no discernible evidence of this drift in either of 
the sets of experimental results and so, accordingly, no correction has been made to 
account for it. 

Since the experiments were performed in a closed wave tank there is no net mass 
transport under the waves and the system of equations in $ 2 must include (1  3 b )  with 
cs = 0. Hence, the waves propagate with speed Q .  Most previous comparisons with the 
experiments do not seem to have accounted for this. 

Then, the horizontal Eulerian velocity under the crest at  any instant is given by 
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PIGCRE 2. Horizontal fluid velocity under the wave crest, u,, plotted against height y above the 
bottom: comparison between the present method (--) arid t>hc experimental results of Le 
Mehaut6 et al. (1968). (a )  H = 0.434, 7 = 8.59; (b )  H = 0.420, 7 = 15.87; (c) H = 0.389, 
7 = 22-49; ( d )  H = 0.433, 7 = 27.24; ( e )  H = 0.499, 7 = 8.59; (f) H = 0.522, 7 = 15.87; 
(9 )  H = 0.492, 7 = 22.49; (h )  H = 0.548, 7 = 27.27. (The horizontal scales vary slightly, t,hc 
diagrams having been taken from results for dimensional velocities in water of varying depths.) 

The velocity profiles for different values of wave height and wave period are shown 
in @re 2 along with the experimental points which were traced from a copy of Le 
MBhaut6 etal. (19G8). For thefirstfour cases,figures 2(a,)-(d), withwave height approx- 
imately 0.4, agreement between this theory and experiment is quite close. Figures 
2(e ) - (h )  show results for higher 'waves ( H  z 0.5). Agreement is generally good except 
for case ( e )  which may reflect experimental difficulties because the theory gives better 
results for longer waves which are numerically more demanding. For each of the waves 
considered different runs were made with N = 8, 16 and 32. It was found that the 
value N = 8 was adequate, and the results for N = 1 6  and 32 were indistinguishable. 

The agreement between the method presented here and experiment is far better 
than any of the other analytical theories as plotted by Le MBhautB et al., even allowing 
for zero mass transport. Although the fifth-order cnoidal wave results of Fenton (1979), 
when adjusted to  account for zero mean drift, compare well with the experimental 
results for the lower wave heights, that theory does not give such good results for the 
higher waves. Dean (1970b), using a similar method to that discussed in this paper, 
considered the same experimental cases but used N = 5 and with no correction for 
zero drift. As previously mentioned, this is adequate for the shorter waves, however 
for longer and higher waves it can give inaccurate results. 

4. Application to shoaling of waves 
4.1. Introduction 

The problem of waves incident normally to a shoaling beach has traditionally been 
approximated by assuming that a t  any position the wave acts as if it were a steady 
wave on fluid of the local depth, assumed constant. Given this supposition, the 
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simplest approach is to neglect frictional dissipation and assume that the wave period 
and energy flux remain constant in a transition from one depth to another. It is 
assumed that there is no reflexion of energydue to the changing depth, a valid approx- 
imation for small slopes (less than 4.5", see Eagleson 1956). 

This approach has been adopted by Eagleson, using linear wave theory and by Koh 
&, Le MBhaut6 (1966) who used third-order and fifth-order Stokes theory to describe 
the waves. When compared with experiment, the higher-order theories do not give 
good results, because as the water becomes shallower, the waves become longer and 
higher and the Ursell criterion for Stokes waves ak < ( l ~ i j ) ~  is inevitably violated. In  
an attempt to produce results which are valid in the shallow region, Svendsen & 
Brink-Kjaer (1972) used first-order cnoidal theory matched to deeper water results 
produced by a Stokes approximation. This has the undesirable result of a discontinuity 
in wave height a t  the matching point, thereby indicating that one of or both the 
theories are in error a t  that depth and all subsequent depths. These methods can be, 
a t  best, only as good as the particular wave theory used. 

One effect not accounted for by these methods is the relative depression of the local 
mean water level. Stiassnie & Peregrine (1980) assumed not only that wave period 
and wave-action flux (hence, energy flux) are conserved, but also that a Bernoulli 
constant and mass flux remain unchanged allowing for the wave-induced set-down 
of the water level. For waves in deeper water, they used the high-order Stokes expan- 
sion of Schwartz (1974) and Cokelet (1977) which gives accurate solutions for steadily- 
progressing waves. As the water becomes shallower and the waves become long, the 
Stokes expansion loses accuracy and so these waves were matched to  the accurate 
solitary wave solution of Longuet-Higgins & Fenton (1974), making the assumption 
that long waves are accurately modelled by a train of solitary waves of finite length. 
This method gave good agreement with experiment, thus providing further justifica- 
tion for the use of local steady wave solutions in the study of wave shoaling. Interest- 
ingly, the wave set-down was found to have an insignificant effect. 

While this approach can give results for gross integral quantities of the wave train, 
it is more difficult to obtain spatially-varying quantities such as fluid velocities which 
may be required in practical problems. The present method based on a Fourier appro- 
ximation can be simply modified to provide a convenient and accurate means of 
modelling shoaling waves, giving all wave properties a t  each depth. 

4.2. Application of the present method 

The method of $ 5  2.1, 2.2 is modified to include another variable F ,  the non-dimen- 
sional mean energy flux, as defined by (17g), and an additional equation relating this 
variable to  the other quantities previously defined. Thus, using the results of 9 2.3, 

- 
F = &3 - @'Q + C (  2R - 1 - &QB, - 7') - Q(R - 1 ), 

where 
- 1  N - 1  

It is usual in a shoaling problem to specify, in an initial depth of water i j$ ,  a wave 
of height H,* and period 7:. The solution at this initial depth yields the energy flux 
according to equation (18). For succeeding depths, the quantities assumed to be 
conserved are the dimensional period r" = T$ = ~(?j /g)h and the dimensional energy 
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flux F* = Fp(g3?j5)i while the wave height, H ,  is now considered to be a variable of 
the problem. Thus i t  is convenient to include yet another equation which specifies the 
wave height for the initial depth solution and the energy flux for each subsequent 
depth. 

The additional equations €or the Newton iteration method are 
- 

f2.yf7 = 4c3- :C~Q+C(ZR- 1-QQBo-r2)-Q(R- 1) -F  = 0 
and 

f2A\.+s = H - H,*/?j$ = 0 

f2A\+8 = F-F,, = 0 for the subsequent depths 

The appropriate non-zero derivatives are 

for the initial depth and 

where Fo ifi the energy flux non-dimensionalized according to the relevant mean depth. 

-cqj/N, j = 0, N ,  
- 2 ~ q j / N ,  j = 1 ,  ..., N - 1 ,  

af2n7+s = 1 for the first, depth only, otherwise this derivative is zero. 
aH 

and 

-- afzs+8 - 1 for depths subsequent t o  the first. 
aF 

Allowing H to be variable also necessitates the inclusion of 

The initial estimate for the energy flux is obtained, in accordance with the other 
variables, from a Stokes approximation: 

?r c2H2 sinh k cosh lc + k F=-- - 
8 7  sin h2 k ' 

This estimate is needed only for the first depth. Subsequently, for small changes in 
the depth, the previous solution may be used as a good initial approximation for the 
other variables provided that the change in depth is accounted €or in the non- 
dirnensionalization. For the results presented below, it was found that the following 
scheme, with the subscript 1 referring to the converged solution a t  the previous depth 
and 2 to the initid approximation a t  the next depth, provided a satisfactory estimate 
of the variables to be used in the first iteration at  the new depth, using r = ?j,*/?j,*, 
the ratio of the successive depths: 

H2 = 13Jr; 

c2 = GI/'+, 

(B j )2  = (Bj )Jr$ ,  j = 0, . . . , N ;  

k, = k l r ;  

(rj12 = 1 + ((rjIl - i}/r, j = 0, . . . , N ;  

R, = 1 + (Rl- i ) /r;  

Q2 == QJrJ ;  

with Po replaced hy i$/d and 7 replaced by r / d .  
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4.3. Comparison with experiment 

The method described above was used to model two sets of wave-tank experiments. 
No mean drift could occur so that equation (13b) was used with c, = 0. 

Eagleson ( 1956) conducted experiments in a wave tank with a bed of uniform slope 
of about 1 in 15. He measured H",  r+ and 7" at  one point before shoaling and used 
linear theory to predict the deep-water value H:. His resultant points, from seven 
separate experiments are shown plotted on figure 3 which have been traced from a 
copy of his paper. The horizontal axis is ? / A ;  the vertical axis is H"/H,* ,  a dimension- 
less wave height. Also shown (dashed line) are the predictions of linear theory without 
requiring that mass transport be zero, as plotted by Eagleson. The results of the 
present method, shown by solid lines, agree well with experiment. At the start of 
shoaling, when the wave height is still small, linear theory is quite accurate but it 
diverges from the experimental results when the waves start to become large. The 
present method, however, seems to predict the wave height quite well. 

Hansen & Svendsen (1979) conducted experiments on a uniform slope of 1 in 35. 
Some of their results have been used for comparison by Stiassne & Peregrine (1980) 
from whose paper the experimental points have been traced and are plotted on figure 4. 
Also shown (dashed line) in this figure 4 ( b )  are three curves typical of the results 
obtained by Stiassnie & Peregrine. It seems that these curves were obtained by 
assuming different initial conditions so that each curve agrees with different parts of 
the experimental results. Each shows a non-uniqueness in H",  consistent with the 
multi-valued nature of some wave properties when considered as a function of the 

I"1GUK.E 3 .  Wave shoaling: the ratio of local wave hciglit to  deep water wave height, H * / H $ ,  
as a function of the local dimensionless depth, i / h ,  as waves travel into the shallower water. 
The seven graphs arc for the experimental cases of Eagleson (195G), values of period and height 
before shoaling are: (a )  H = 0.10G, 7 = G.13; ( b )  H = 0.151,7 = 7.22; (c) H = 0.202, 7 = 5.96; 
(d)  H = 0.134, 7 = 4.72; ( e )  H = 0.131, 7 = 4.02; (f) H = 0.251, 7 = 5.30; (9)  H = 0.204, 
7 = 4.74. Toget.hcr with the experiment.al points ( . ), the predictions of linear t,heory (- - - -) 
and present theory (--) are shown. 
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FIGURE 4. Wave shoaling: variation of wave height H relative to initial depth ?jo as waves travel 
into shallower water, shown against the dimensionless local depth f / to. The three graphs are 
for experimental cases of Hansen & Svendsen (1979) whose experimental points are plotted with 
the predictions of the present method (--). Three curves of Stiassnie & Peregrine (1980) are 
shown (- - -) corresponding to  differing initial conditions: (a)  H = 0.31,7 = 5.72; ( b )  H = 0.13, 
7 = 0.95.; (c) H = 0.14, 7 = 19.04. 

wave height (see Longuet-Higgins & Fenton 1974). However, in the laboratory 
situation it does not seem that the upper limb would be attainable. 

Results from the present theory are shown by the single solid curves, using as 
initial conditions the point at  the right hand edge of each graph. It can be seen that 
agreement with experiment is quite good. The curves are congruent with those of 
Stiassnie & Peregrine except in the final stages before breaking where they continue 
the trend of the experimental results up to the breaking height but at a greater depth. 
This does not reflect any unusual virtue of the present method to  describe all phases 
of shoaling, rather it is simply fortuitous that the lack of accuracy of the present 
Fourier approximation for the very highest and longest waves, in not accounting for 
the sharpness of the crest, causes the theoretical results to mimic the laboratory wave. 
All results in this section were produced from a Fourier approximation with N = 16. 
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